
1347

Allenes. Part XXVII.¹ Reaction of Dialkyl(lithio)copper Reagents with 1-Bromoallenes, 1-lodoallenes, and 3-Chloroalk-1-ynes

By Michael Kalli, Phyllis D. Landor, and Stephen R. Landor,*† Woolwich Polytechnic, London S.E.18 and Makerere University, Kampala

Allenic hydrocarbons are obtained in high yield by the reaction of 1-halogenoallenes or 3-chloroalk-1-ynes with dialkyl(lithio)copper reagents at low temperature.

DIALKYL(LITHIO)COPPER reagents² have proved useful as alkylating agents for replacing halogen atoms attached to a variety of sp^2 and sp^3 carbon atoms.³ We now report their use in replacing a halogen atom attached

to an allenic system,⁴ which provides a useful general synthesis of 1,3-di- and 1,1,3-tri-alkyl allenes from readily available allenic halides [equation (1)].

the allenic hydrocarbon was isolated by preparative g.l.c.; for preparative scale experiments, a 1.25:1 molar ratio of reagent to allenic halide was used and the product was separated by fractional distillation. Reactions with Me₂CuLi were carried out at -5° , with Et₂CuLi at -30° , and with Bu₂CuLi at -60° for 1-3 h. Products were characterised by elemental analysis and i.r. and n.m.r. spectra.

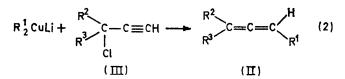
An alternative preparative method used 3-chloroalk-1ynes (III) and R₂CuLi reagents (Table 3) and gave high yields of allenic hydrocarbons [equation (2)]. The chloroacetylenes are readily prepared by literature methods.8

	Product (II)		Yield	G.l.c. (silicone oil)	Foun	d (%)	Requir	ed (%)	
'R1	\mathbf{R}^{2}	$\mathbf{R}^{\mathbf{\hat{s}}}$	(% from g.l.c.)	[temp. and $t_{\mathbf{R}}$ (min)]	С	н	С	н	$n_{\mathbf{D}}^{20}$
Me	Me	Me	74	$25^{\circ}; 5.4$	87.8	$12 \cdot 2$	87.8	$12 \cdot 2$	1.4395
Me	Me	\mathbf{Et}	85	25°; 10.5	87.1	12.7	$87 \cdot 4$	12.6	1.4410
Me	Pr ⁿ	н	85	25°; 13·8	87.2	12.6	87.4	12.6	1.4401
Me	$\mathbf{Bu^t}$	Me	87	25°; 16·2	86.9	12.7	87.0	13.0	1.4437
Et	Me	Me	51	40° ; 4 ·8	86.9	12.6	87.4	12.6	$1 \cdot 4385$
Et	Me	Et	59	40°; 9.6	87.1	12.7	87.2	12.8	$1 \cdot 4433$
Et	Pr ⁿ	н	68	40°; 12·3	86.9	$12 \cdot 9$	87.2	$12 \cdot 8$	$1 \cdot 4391$
Et	$\mathbf{Bu^t}$	Me	74	40°; 24.6	87.0	12.9	86.9	13.0	$1 \cdot 4465$
Bun	Me	Me	85	60°; 9·5	86.8	12.9	87.0	13.0	1.4550
Bun	Me	Et	87	$60^{\circ}; 25.8$	87.0	12.9	86.9	13.0	1.4485
Bun	\Pr^n	н	81	60°; 34·2	86.9	13.0	86.9	13.0	1.4516
Bu ⁿ	$\mathbf{Bu^{t}}$	Me	80	60°; 19·5	86.9	13.0	86.7	13.3	1.4513

TABLE 1 Preparation and physical data for allenic hydrocarbons from bromo-allenes [equation (1); X = Br]

3-Alkyl- and 3,3-dialkyl-1-bromoallenes (I; X = Br) were prepared from prop-1-yn-3-ols and hydrobromic acid in the presence of copper(I) bromide,⁵ 1-iodo-3methylpenta-1,2-diene (I; $R^2 = Me$, $R^3 = Et$, X = I) was prepared from 3-methylpent-1-yn-3-ol and hydriodic acid in the presence of copper(I) iodide,⁶ and 1-iodohexa-1.2-diene (\hat{I} ; $R^2 = Pr$, $\hat{R}^3 = H$, X = I) was prepared from hex-1-yn-3-ol and triphenyl phosphite methiodide.7 Dialkyl(lithio)copper reagents were prepared according to published procedures.^{2,3} Small-scale experiments (Tables 1 and 2) were carried out with 2.5 mol of dialkyl-(lithio)copper reagent per mol of halogen compound and

† Present address: Makerere University, P.O. Box 16020, Kampala, Uganda.


¹ Part XXVI, Z. T. Fomum, P. M. Greaves, P. D. Landor, and S. R. Landor, J.C.S. Perkin I, 1973, 1108.
² H. Gilman, R. G. Jones, and L. A. Woods, J. Org. Chem.,

1952, 17, 1630.

³ E. J. Corey and G. H. Posner, J. Amer. Chem. Soc., 1967,
³ E. J. Corey and G. H. Posner, J. Amer. Chem. Soc., 1967,
³ S. J. Corey and G. H. Posner, J. Amer. Chem. Soc., 1967,
³ S. J. Corey and G. H. Posner, J. Amer. Chem. Soc., 1967,
³ S. J. Corey and G. H. Posner, J. Amer. Chem. Soc., 1967,
³ S. J. Corey and G. H. Posner, J. Amer. Chem. Soc., 1967,
³ S. J. Corey and G. H. Posner, J. Amer. Chem. Soc., 1967,
³ S. J. Corey and G. H. Posner, J. Amer. Chem. Soc., 1967,
⁴ Preliminary report, M. Kalli, P. D. Landor, and S. R.

Landor, I.C.S. Chem. Comm., 1972, 593.

1-Halogenoallenes are known⁹ to react with alkyllithium reagents via a carbene mechanism to give a mix-

ture of products in which acetylenes predominate. Since dialkyl(lithio)copper reagents directly replace a halogen

⁵ S. R. Landor, A. N. Patel, P. F. Whiter, and P. M. Greaves, J. Chem. Soc., 1966, 1223; S. R. Landor, B. Demetriou, R. J Evans, R. Gryeskowiak, and D. Pavey, J.C.S. Perkin II, 1972, 1995.

⁶ P. M. Greaves, M. Kalli, P. D. Landor, and S. R. Landor, J. Chem. Soc. (C), 1971, 667. ⁷ C. S. L. Baker, P. D. Landor, S. R. Landor, and A. N. Patel,

J. Chem. Soc. (C), 1965, 4348.

G. F. Hennion and A. B. Boisselle, J. Org. Chem., 1961, 26, 725; G. F. Hennion, J. J. Sheehan, and D. E. Mahoney, J. Amer. Chem. Soc., 1950, 72, 3542.

⁹ S. R. Landor and P. F. Whiter, J. Chem. Soc., 1965, 5625.

on C-1 by an alkyl group to give only allenic, and no acetylenic products, we tentatively suggest that the

TABLE 2

Preparation of allenic hydrocarbons from iodoallenes [equation (1); X = I]

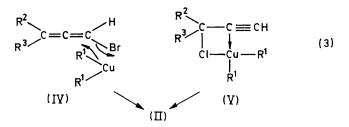

	• I	• •	-
	Product (II)		Yield
R1	\mathbb{R}^2	R3,	(% from g.l.c.)
Me	Me	Et	63
Et	Me	\mathbf{Et}	66
Bu ⁿ	Me	Εt	68
Me	Pr ⁿ	\mathbf{H}	68
Εt	Pr ⁿ	\mathbf{H}	67
Bu ⁿ	Pr ⁿ	\mathbf{H}	64

TABLE 3

Preparation of allenic hydrocarbons from chloro-acetylenes [equation (3)]

	Product (II)		Yield
'R1	\mathbb{R}^2	\mathbb{R}^{3}	(% from g.l.c.)
Me	Me	Εt	66
Et	Me	\mathbf{Et}	63
\mathbf{Bu}	Me	\mathbf{Et}	64
Me	Pr ⁿ	н	62
Et	Pr ⁿ	н	66
\mathbf{Bu}	\Pr^n	\mathbf{H}	71

reaction goes through a four-centre transition state (IV) [equation (3)]. A similar mechanism was suggested for

the reaction of 1-bromoallenes and copper(I) cyanide,¹⁰ supported by the fact that optically active 1-bromoallene⁵ gave optically active 1-cyanoallene.¹⁰

Crabbé has suggested an addition-elimination mechanism for a similar replacement of acetate by an alkyl group,¹¹ through a radical-anion intermediate, which was shown to be non-stereospecific. The reaction of 3chloroalk-1-ynes and R₂CuLi is believed to proceed via the π -complex (V), as suggested for the formation of 1bromoallenes from prop-1-yn-3-ols.⁵

EXPERIMENTAL

I.r. spectra were determined for liquid films (0.025 mm cell)and for 5% solutions in chloroform with a Perkin-Elmer 337 spectrophotometer. N.m.r. spectra were determined on a Varian A60 instrument for solutions in deuteriochloroform with tetramethylsilane as internal standard. Analytical g.l.c. was carried out using a Pye 104 instrument on glass

¹⁰ P. M. Greaves, S. R. Landor, and D. R. J. Laws, *J. Chem. Soc.* (*C*), 1968, 291; P. M. Greaves and S. R. Landor, unpublished work.

columns (5 ft) with nitrogen as carrier gas at a flow rate of 40 ml min⁻¹ and preparative g.l.c. on glass columns (7 ft) with N₂ flow rate 60 ml min⁻¹. Silicone oil refers to grade SE 30 on Chromosorb W. All reactions were carried out under an atmosphere of pure nitrogen.

Dialkyl(lithio)copper Reagents.—(a) Dimethyl(lithio)copper ² was prepared from a standardised solution of methyl-lithium ¹² (1·1 g, 0·05 mol) in anhydrous ether (50 ml) and a vigorously stirred suspension of copper(I) iodide (4·75 g, 0·025 mol) in ether (50 ml) at -5° .

(b) Diethyl(lithio)copper ³ was prepared from ethyllithium (1.8 g, 0.05 mol; Alpha Inorganics, Inc.) in benzene (50 ml) and a vigorously stirred suspension of copper(1) iodide (4.75 g, 0.025 mol) in dry ether (100 ml) at -30° .

(c) Di-n-butyl(lithio)copper ³ was prepared from butyllithium (3·2 g, 0·05 mol; Alpha Inorganics, Inc.) in hexane (25 ml) and a vigorously stirred suspension of copper(1) iodide (4·75 g, 0·025 mol) in dry ether (25 ml) at -60° .

Allenic Hydrocarbons.—The 1,3-di- and 1,1,3-tri-alkyl allenes prepared from 1-bromoallenes ⁵ and the appropriate dialkyl(lithio)copper reagent are listed in Table 1. Reactions with Me₂CuLi were carried out at -5° , with Et₂CuLi at -30° , and with Bu₂CuLi at -60° for 1—3 h. Typical small-scale and preparative scale experiments are described below.

4-Methylhexa-2,3-diene. (a) 1-Bromo-3-methylpenta-1,2diene (1.61 g, 0.01 mol) in dry ether (25 ml) was added to an ethereal solution of dimethyl(lithio)copper (0.025 mol) kept at -5° , prepared as above. After vigorous stirring for 2.5 h, the mixture was hydrolysed by careful addition of water, filtered, and dried (MgSO₄). The residue from evaporation was analysed by g.l.c. (silicone oil; 25°) and gave one product ($t_{\rm R}$ 10.5 min; estimated yield 85%). Purification by preparative g.l.c. (silicone oil; 65°; $t_{\rm R}$ 15 min) gave 4-methylhexa-2,3-diene, $v_{\rm max}$ 1950 (C=C=C) cm⁻¹, τ (CDCl₃) 9.05 (3H, t, CH₃·CH₂), 8·38 (3H, d, $J_{1,2}$ 7 Hz, CH₃·CH), 8·35 (3H, d, $J_{4.2}$ 2·5 Hz, CH₃C=), 8·20 (2H, dq, CH₂·CH₃), and 5·10 (1H, m, =CH). (See Table 1.)

(b) 1-Bromo-3-methylpenta-1,2-diene (16·1 g, 0·1 mol) in dry ether (50 ml) was treated with dimethyl(lithio)copper (0·125 mol) at -5° and the product was worked up as before. Distillation through an 8 in column of Fenske rings gave 4methylhexa-2,3-diene (6·5 g, 68%), b.p. 92° at 760 mmHg, identical with the sample obtained from the small-scale experiment.

3-Methylhepta-3,4-diene.— 1-Bromo-3-methylpenta-1,2diene (16·1 g, 0·1 mol) in dry ether (50 ml) was added to an ethereal solution of diethyl(lithio)copper (0·125 mol) at -30° and the product was worked up as before. Fractional distillation of the residue (11·2 g) as before gave 3-methylhepta-3,4-diene (6·25 g, 57%), b.p. 50° at 80 mmHg, identical (g.l.c., spectra, and refractive index) with an authentic sample.

3-Methylnona-3,4-diene.—A solution of 1-bromo-3-methylpenta-1,2-diene (16·1 g, 0·01 mol) in dry ether (50 ml) was added dropwise to a solution of di-n-butyl(lithio)copper (0·125 mol) at -60° and the product was worked up as before. The residue (14·7 g) was fractionated as before to give 3-methylnona-3,4-diene, identical (g.l.c., spectra, and refractive index) with an authentic sample.

In a similar manner 1,3-di- and 1,1,3-tri-alkyl allenes were prepared from 1-iodoallenes,^{6,7} with dialkyl(lithio)copper

¹¹ P. Rona and P. Crabbé, J. Amer. Chem. Soc., 1969, 91, 3289.
¹² A. Gilman and F. Cartledge, J. Organometallic Chem., 1964, 2, 447.

1973

reagents, and the physical constants of the products were identical with those given in Table 1; the yields are given in Table 2. Yields of products from 3-chloroacetylenes ⁹ and dialkyl(lithio)copper reagents are given in Table 3. All the

allenes prepared showed a typical i.r. band at 1950—1970 cm⁻¹ and in the n.m.r. the allenic protons gave a signal at τ 5·2—4·95.

[2/2884 Received, 28th December, 1972]